Journal of Organometallic Chemistry, 378 (1989) 493-496 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20289

Correlation of NO stretching frequencies with coordination modes in metal complexes of C-nitroso compounds

M. Cameron, B.G. Gowenlock

Department of Chemistry, Heriot-Watt University, Edinburgh EH14 AS (U.K.)

and G. Vasapollo

Centro M.I.S.O. del C.N.R., Dipartimento di Chimica, Universita di Bari, Via Amendola 173, 70126 Bari (Italy)

(Received July 10th, 1989)

Abstract

It is shown that the previous use of IR spectroscopy for determination of the co-ordination mode of *p*-nitrosodimethylaniline (NODMA) is generally unreliable owing to a faulty assignment of the NO stretching frequency for NODMA itself.

The mode of coordination to a metal of any C-nitroso compound may be determined unambiguously by X-ray crystallography, and consequently attempts have been made to establish a simple empirical correlation of a physical parameter with the X-ray structural data. The most frequently employed technique is infra-red spectroscopy and changes in the NO stretching frequency have been correlated with the coordination mode revealed by the crystal structure. Both separately [1,2] and together [3] we have made use of a supposed relationship which has been used by other workers, namely that σ -N coordination (I) results in a small drop of ν (NO) on passing from the free ligand to the co-ordination compound, σ -O coordination (II)

in a small rise in $\nu(NO)$, and π -NO coordination (III) by a large drop in $\nu(NO)$. In this communication we draw attention to a major difficulty in accepting the second of these correlations because of a long established confusion in infra-red spectroscopic interpretation.

There are only two cases in which σ -O coordination has been established by X-ray crystallography [4,5] and in both of these the ligand is *p*-nitrosodimethylaniline (NODMA). Consequently any correlation with ν (NO) depends upon the detailed assignment of the infra-red spectrum of NODMA itself. NODMA forms several σ -N coordination compounds for which the infra-red spectra have been recorded and the value given for ν (NO) in both the complex and the free ligand [6–11], the most frequently cited value for NODMA being 1527 cm⁻¹. There was a significant implied variation from this value, in a case in which ¹⁵N labelling was used to demonstrate that in a [Ru(bpy)₂(NODMA)Cl][PF₆] complex ν (NO) is 1286 cm⁻¹ [12]. This could imply a lower value for ν (NO) in NODMA itself, but does demonstrate the importance of ¹⁵N labelling in identifying the NO stretching frequency.

Although the NO stretching frequency in most monomeric *p*-substituted nitrosobenzenes falls within the range 1488–1513 cm⁻¹ [13,14] it should be noted that this group of nitrosobenzenes does not include NODMA itself. Lüttke [15] reported a value $\nu(NO)$ of 1372 cm⁻¹ on the basis of data derived by ¹⁵N-substitution in the NO group, but unfortunately this has been totally ignored in the coordination chemistry literature. This value has been updated in a comprehensive study by Knieriem [16] in which both ¹⁵N and deuterium substitutions were employed, the final value of $\nu(NO)$ in NODMA being given as 1363 cm⁻¹. This

Fig. 1. Infra-red spectra of four NODMA complexes recorded with KBr discs: $A = PtCl_2(NODMA)_2$; $B = PdCl_2(NODMA)_2$; $C = NiCl_2(NODMA)_2$; $D = Me_2SnCl_2(NODMA)_2$.

Complex	Bands in 1300–1600 cm ^{-1} range	Previously chosen $\nu(NO)$ (cm ⁻¹)	Ref.
(A) PtCl ₂ (NODMA) ₂	1307,1337,1374,1397,1423,1447,1483,1490,1554	1490	a
(B) $PdCl_2(NODMA)_2$	1312,1340,1377,1403,1435,1501,1530,1556	1501	а
(C) NiCl ₂ (NODMA0 ₂	1318,1331,1400,1455,1500,1525,1565	1500	а
(D) $Me_2SnCl_2(NODMA)_2$	1305,1337,1372,1399,1417,1505,1563	1563	а
NODMA	1302,1337,1363,1397,1441,1527,1551	1363	16
NODMA	1303,1341,1367,1398,1460,1530,1555	1530	18
NODMA	1305,1341,1367,1400,1447,1531,1555		a

Table 1IR data for NODMA complexes

^a This work.

study, though remaining in thesis form, has been available for ten years in the literature on C-nitroso compounds through its citation by Talberg [17].

The spectra both of NODMA and of the various coordination compounds exhibit many bands in the $1000-1600 \text{ cm}^{-1}$ range, but authors can be highly selective in the listing of bands in this range. In only one instance [9] was there a spectrum of both NODMA and a coordination compound, namely [PdCl₂-(NODMA)₂]. In some cases [6,10,11] only two bands are reported for halide complexes, and in two other cases only one such band [4,8]. There appears to have been an unfortunate prejudgement in relating the infra-red evidence in terms of the mode of coordination of NODMA.

The accompanying figures and table demonstrate the complexity of the infra-red spectra of four NODMA complexes and of NODMA itself. In the absence of ¹⁵N-substitution studies, unambiguous identification of the NO stretching frequency is difficult. We therefore suggest that the previously employed simple correlations of $\Delta \nu$ (NO) with σ -N or σ -O coordination mode are incomplete, and should be employed with caution. Such a conclusion adds further point to the endeavour to find bases for correlation with other spectroscopic data, such as ¹³C NMR [1] and XPS spectra [3], or with bond lengths derived from X-ray crystal structures of nitroso-compounds and resulting coordination compounds. Evidence for such correlations will be published in the near future.

Experimental

The complexes were prepared by published methods [3-9] involving mixing of solutions of the metal salt and NODMA with appropriate concentration of the mixed solutions at which immediate precipitation does not occur.

Acknowledgements

M.C. thanks the SERC for a maintenance grant.

References

1 A.S.F. Boyd, G. Browne, B.G. Gowenlock and P. McKenna, J. Organomet. Chem., 345 (1988) 217.

² G. Vasapollo, A. Sacco, C.F. Nobile, M.A. Pellingheli and M. Lanfranchi, J. Organomet. Chem., 353 (1988) 119.

- 3 G. Vasapollo, C.F. Nobile, A. Sacco, B.G. Gowenlock, L. Sabbatini, C. Malitesta and P. Zambonin, J. Organomet. Chem., 378 (1989) 239.
- 4 G. Matsubayashi and K. Nakatsu, Inorg. Chim. Acta, 64 (1982) L163.
- 5 H. Shengzhi, R.J. Barton, P.O. Ikekwere, K.E. Johnson and B.E. Robertson, J. Xiamen Univ. (Natural Science), 23 (1984) 263.
- 6 C.J. Popp and R.O. Ragsdale, Inorg. Chem., 7 (1968) 1845.
- 7 I. Batten and K.E. Johnson, Can. J. Chem., 47 (1969) 3075.
- 8 D.B. Sams and R.J. Doedens, Inorg. Chem., 18 (1979) 153.
- 9 A.S. Pilipenko, L.L. Shevchenko and A.P. Popel, Zhur. Priklad. Spectrosk., 24 (1976) 365.
- 10 P.O. Ikekwere and K.E. Johnson, Synth. React. Inorg. Met.-Org. Chem., 15 (1985) 883.
- 11 P.O. Ikekwere, Synth. React. Inorg. Met.-Org. Chem., 18 (1988) 629.
- 12 W.L. Bowden, W.F. Little and T.J. Meyer, J. Am. Chem. Soc., 98 (1976) 444.
- 13 W. Lüttke, Z. Elektrochem., 61 (1957) 302.
- 14 W.J. Mijs, Thesis, Leiden, 1959.
- 15 W. Lüttke, Angew. Chem., 70 (1958) 576.
- 16 B. Knieriem, Thesis, Göttingen, 1972.
- 17 H.J. Talberg, Acta Chem. Scand. A., 33 (1979) 289.
- 18 Aldrich Library of FT-IR Spectra, Edition 1, C.J. Pouchert, p. 1325 C.